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LE’ITER TO THE EDITOR 

Appearance of correlations and symmetry breaking in 
non-equilibrium reaction-diffusion systems 

D J Elderfield and D D Vvedensky 

The Blackett Laboratory, Imperial College, London SW7 2BZ, UK 

Received 7 October 1985 

Abstract. Using the reaction-diffusion master equation of chemical kinetics, we study 
fluctuations and correlation functions around non-equilibrium steady states. We demon- 
strate that the underlying Lagrangian description in the Poisson representation possesses 
in the equilibrium limit an exact symmetry which ensures that statistical mechanics is 
recovered and that the intrinsically non-equilibrium long-range correlations in these systems 
vanish. An explicit form for the two-time single-particle correlation function, including 
both the long-range and short-range contributions, is constructed using mean-field argu- 
ments. 

In recent years many authors have studied the fluctuations and correlation functions 
for non-equilibrium steady states (Haken 1975, Gardiner et a1 1976, Lemarchand and 
Nicolis 1976, Malek Mansour et a1 1981). Simple fluids near equilibrium have been 
discussed using kinetic theory and fluctuating hydrodynamics (Ronis et a1 1979, van 
der Zwan et a1 1981, Tremblay et a1 1981, Kirkpatrick et a1 1982), while chemical 
reaction-diffusion models have been described by mean-field (Nitzan et a1 1974, 
Gardiner et a1 1976, Keizer 1982, Nicolis and Malek Mansour 1984, Elderfield and 
Vvedensky 1985) and renormalisation group (RG) methods (Dewel et a1 1977, Janssen 
1981, Goldhirsch and Procaccia 1981, Vvedensky et a1 1984, Elderfield and Vvedensky 
1985). A major conclusion from these studies is that non-equilibrium constraints lead 
to long-range correlations which vanish in the equilibrium limit. 

In previous papers we have developed a systematic path integral description of 
reaction-diffusion systems based upon the Poisson transform method .introduced by 
Gardiner and co-workers (Gardiner and Chaturvedi 1977, Gardiner 1983). For the 
Schlogl (1972) model we applied our approach in the critical regime using RG methods 
(Elderfield and Vvedensky 1985) and corrected previous attempts at characterising the 
phase transition (Dewel et a1 1977, Janssen 1981, Goldhirsh and Procaccia 1981, 
Vvedensky et a1 1984). Moreover, we showed that in the equilibrium limit the long-range 
correlations vanish and statistical mechanics is recovered. This is a general feature of 
certain reaction-diffusion systems which we show in this letter to result from an exact 
symmetry of the underlying Lagrangian description of the dynamics in the Poisson 
representation. 

We shall consider the general sequence of R reactions, 

k r  

k: 
A , + N , X  e B,+M,X M r S N N ,  r = l ,  ..., R 
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where it is arranged for the concentrations of A, and B, denoted by [ A , ]  and [B,],  
to be held fixed (an open system), while the concentration [ X I  is monitored. Note 
that (1) includes the Schlogl (1972) models as special cases. Phenomenologically, the 
reaction-diffusion master equation associated with (1) is given by the following spatially 
discrete form (Gardiner 1983): 

N a 
-p({xi}, f ) =  D,j[(Xi+l)P(x,,. . . , x i + 1 , .  . . ,Xj - l , .  . . ,xN, t)-P({xi}, f ) ]  
a t  i , j=l 

where K ,  = k,[A,] ,  K : =  k:[B,],  xi is the number of X molecules in the ith cell, the 
non-local terms represent cell-to-cell diffusion and the local terms are specified by the 
reaction sequence (1). Several schemes have been developed for converting the master 
equation ( 2 )  into the more computationally suitable form of a Fokker-Planck equation. 
However, only the Poisson representation yields a Fokker-Planck equation exactly 
equivalent to (2) both near and far from equilibrium. Accordingly, to solve (2) we 
write P as a superposition of Poissonians (Gardiner and Chaturvedi 1977, Gardiner 
1983): 

where % is a closed contour in the complex plane and as such f is best viewed as a 
Markovian quasiprobability. Substituting (3) into (2) we find that the Poissonian 
fluctuations are described exactly by the Fokker-Planck equation 

Denoting averages in the concentration and Poisson representations by (( )) and ( ), 
respectively, we find that equal-time correlation functions are related by the connection 
formula 

or, more explicitly, 

The extension of ( 5 )  and ( 6 )  to multi-time correlation and response functions has been 
described recently by Elderfield (1985) (see below). 
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We represent the solution of (4) in the form of a functional integral using a variant 
of the Martin-Siggia-Rose (MSR) formalism (Martin et a1 1973) and obtain the 
generating functional 2 for Poissonian correlation and response functions as (Elderfield 
1985) 

Z(1, f )  = [da]  [d&] exp( 1 d t (L+  la + f&)) I (7) 

where the Lagrangian L takes the form 

( P q a t  a )  
N 

L= ia,(t) -Dpq+S - a,(t) 
p , q = 1  

As usual one has 

with their natural generalisations. Moreover, within this framework the connection 
formula for the two-time correlation function takes the form (Elderfield 1985) 

((XJ t ) X , (  t ~ ) )  ‘ z ’ (ap ( t )aq (  t ’ ) )  + i(a,( t)aq( t’)&,( t ’ ) )  (10) 

which in the limit t + t‘ reduces to the second of equations ( 6 ) .  Readers familiar with 
the MSR formalism will observe that our Lagrangian contains no Jacobian term, since 
we have defined 

(&;( t)ap( t ) )  = 0 (11) 
for p > 1 and all q. 

more conventional form 
We may recast (4) in the form of a Langevin equation by first writing (8) in the 

where we take negative factorials to vanish. Conversion to a Langevin equation is 
now straightforward and we obtain the multiplicative form 
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where ,$(n) is an nth-order &corrected noise, i.e. 

( 5 b : ' ( ? l ) . . . 5 ~ ' ( ? n ) ) = S p l , p i . . .  ~ p n - , , p . S ( ? l - f 2 ) * * *  s ( t n - 1 - t n )  (14) 

with all lower-order moments vanishing and an Ito interpretation of (13) is to be 
understood. 

In order to achieve a steady state in the reaction scheme ( l ) ,  the [A,] and [B,] 
must be adjusted at rates R, given by 

(15 )  R, = K, [  x] Nr - K :[ x] M r  

so true equilibrium (no fluxes, R = 0) occurs only if each reaction balances indepen- 
dently (detailed balance): 

K, [  XI"' = K :[ XIM'. (16) 

Guided by this observation, we consider the symmetries of the Lagrangian (8) and 
(12) under the constraints 

K , /  K i = A M r -  Nr (17)  

where A is a constant. Given (17) and (8) a little algebra uncovers the invariance of 
the Lagrangian under the interchange 

i & ( t ) e ( l / A ) [ A  -a(-?)] (18) 

from which we obtain 

(a( t ) )  = A(l -i&(-?)) = A 

( a (  ? ) a (  t ) )  - ( a (  t ) ) 2  = h2(i&( - t)i&( -?)) = 0 

since ( ( & ) p )  =0, as is easily demonstrated (de Dominicis and Peliti 1978). From (19) 
we infer that the fluctuations are suppressed by (17) and, moreover, using the connection 
formula (6), ( a )  = ((x)), we deduce that the constraint (17) is nothing other than the 
detailed balance condition (16). In equilibrium the Poissonian fluctuations are sup- 
pressed and one finds the stationary distribution 

in full agreement with statistical mechanics (Landau and Lifschitz 1959). 
To describe true non-equilibrium steady states or temporal correlations one must 

resort to approximate methods. We consider the mean-field or Gaussian approximation 
to (7) and (12) and define the density p = ( ( x , ) ) / V ,  V+O, to satisfy the deterministic 
equation in the continuum limit ( Dij + V2, U, = K ,  VNr-', U: = K i VMr- ' ) :  

R 
( M ,  - Nr)(  u,pN, - u:pM') = 0. 

r =  1 

Introducing the correlation length 6 and current J, 

i a  5 = - - ( M ,  - N,)(u,p" - U : p M ' )  
( D a p  

J = [ M,( M ,  - 1) - N,( N, - 1)]( u,p N r  - u:pM')  
r 
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25 P +cc)). (24) 
C(qo)= 6 ( q - q ’ )  S ( o - U ’ )  ( [D(q2 + .$-2)]2+ w 2 +  (D( q2+ .$-2) +io 

Fourier transforming we obtain 

J jr - r’( 
C(rt; r’t’) = 4.rrDI r - r’l exp( -t) 

1 
+ P (  ~ T D (  t - t ’ )  

where in equilibrium (cf (16)) the first (or long-range) term vanishes identically as 
discussed above. Consequently, at short times the equilibrium correlations are intrinsi- 
cally short-ranged: 

Ceq(rt; r’o) = p(  ’) 3’2 exp[ - (‘4D, r-r‘I2 + F) ] 2 p S(r - r’). 
4 ~ D t  

Simple mean-field approximations thus yield the full two-time correlation function, 
including both the short- and long-range contribution. In the equal-time limit (25) 
reduces to the expression. 

Ir - r’I + p S( r - r’) 
J 

C( rt; r’t) = 4 , 4 r  - r’/ ex’( -7) 
obtained previously by other authors (Gardiner and Chaturvedi 1977, Keizer 1982, 
Nicolis and Malek Mansour 1984, Vvedensky et a1 1984). 

To summarise, we have shown using the Poisson representation of the reaction- 
diffusion master equation that the recovery of statistical mechanics in equilibrium 
results from an exact symmetry of the underlying Lagrangian. The two-point correlation 
function was derived in mean-field theory to explicitly demonstrate the decay of 
non-equilibrium correlations as the external constraints are relaxed. Of course, the 
symmetry (18 )  does not provide a very stringent constraint on the Gaussian approxima- 
tion to the Lagrangian (8), though failure to respect the symmetry in the non-linear 
terms may lead not only to the loss of the correct equilibrium limit, but to an erroneous 
characterisation of the non-linear behaviour of the system as well (Janssen 1981, 
Elderfield and Vvedensky 1985). Indeed, since the associated Langevin equation (13 )  
is multiplicative, we expect qualitative differences to result beyond mean-field theory 
by replacing (13) with additive or pseudo-additive dynamics. 

The support of the Science and Engineering Research Council and the British Petroleum 
Venture Research Unit is gratefully acknowledged. 
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